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Two distinct modeling approaches are often used when predicting biodiversity patterns: stacking of species
models (predict first, assemble later), and directlymodeling a characteristic of a community such as species rich-
ness (assemble first, predict later). The relative utility of these two approaches for biogeographic,
macroecological and global change analyses is uncertain. Here we compared the two approaches by predicting
current-day avian dietary guild structure of assemblages worldwide. We found that the stacked-species model-
ing approach consistently predicted the geographic distribution of observed dietary guilds better than a direct
community modeling approach. The exception was for plant-eating birds, especially frugivores, which are ex-
pected to have particularly strong climatic constraints on their diversity and distributions. Assemblage-level bio-
diversity patterns predicted by community-based modeling approaches, such as the stacked-species and direct
communitymodeling approaches in this study, offer a means to help guide conservation decisions for determin-
ing environmental suitability and analyzing diversity hotspots. However, our results generally caution against the
widespread use of direct community modeling approach at the large spatial extents for predicting species
assemblages.
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1. Introduction

A major focus in biogeography and macroecology is to accurately
model and predict geographic variation in the composition and attri-
butes of biological communities. This pursuit is particularly relevant
for projecting how communities and their many functions may be
perturbed under impending climate change (Jetz et al., 2007; Dawson
et al., 2011; Bellard et al., 2012). The potential constraints shown on
community structure arising fromassembly rules limiting species' coex-
istence have long been realized (Weiher and Keddy, 1999; Ackerly and
Cornwell, 2007). But, how such constraints impinge on our ability to
predict community structure and ecosystem functioning and how con-
sistently they are shown at different spatial scales, especially in a broad-
scale climate change future, still remain uncertain (Thuiller et al., 2003;
Baselga and Araújo, 2009; Belmaker and Jetz, 2013). If prevalent,
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assembly rulesmay under human-driven global change significantly af-
fect the re-aggregation of communities and thus change the individual
responses of species. Such community-level constraints on future spe-
cies distributionswould have significant consequences for the appropri-
ate modeling approaches (Araújo and Luoto, 2007; Heikkinen et al.,
2007; Baselga and Araújo, 2009).

Communities and their attributes (such as total species richness,
functional indices or prevalence of a given group) are commonly
modeled using a stacked-species community modeling approach
that first models the spatial distributions of each species and then
derives community attributes at different locations by aggregating
the predicted individual species distributions (Guisan and
Zimmermann, 2000; Ferrier and Guisan, 2006; Dubuis et al., 2011).
This kind of approach offers detailed information on the exact
identity of the species in the predicted assemblages and has often
led to accurate predictions of community attributes for small and
spatially restricted datasets (Leathwick et al., 2006; Elith and
Leathwick, 2007; Algar et al., 2009; Baselga and Araújo, 2009;
Chapman and Purse, 2011; Dubuis et al., 2011). However, by assum-
ing that species assemble independently of each other, this approach
ignores potential interrelationships among species comprising a
community. One simple alternative is a direct community modeling

http://crossmark.crossref.org/dialog/?doi=10.1016/j.biocon.2016.07.026&domain=pdf
http://dx.doi.org/10.1016/j.biocon.2016.07.026
mailto:walter.jetz@yale.edu
Journal logo
http://dx.doi.org/10.1016/j.biocon.2016.07.026
Unlabelled image
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/bioc


397C.-Y. Ko et al. / Biological Conservation 201 (2016) 396–404
approach that statistically associates aggregate community
attributes with environmental variables (Ferrier and Guisan, 2006;
Baselga and Araújo, 2009; Dubuis et al., 2011). Following in the foot-
steps of macroecological models of species richness (Brown, 1981;
Jetz and Rahbek, 2002), this approach is straightforward to use
with large, multi-species datasets and putatively able to accommo-
date species interdependencies within communities because it
accommodates spatial co-occurrences of species to infer communi-
ty-level patterns (Baselga and Araújo, 2009; Chapman and Purse,
2011). These factors combined with the approach's ability to quickly
synthesize complex data for conservation applications have led to
notable popularity (Ferrier and Guisan, 2006; Algar et al., 2009;
Chapman and Purse, 2011).

An increasing number of studies are considering community attri-
butes such as total species richness, proportional richness or community
functional attributes as a response variable for current-day predictions
and projections under climate change (Lemoine and Böhning-Gaese,
2003; Kissling et al., 2007; Steinmann et al., 2009; Kissling et al., 2010;
Sommer et al., 2010; Chown et al., 2012; Dubuis et al., 2013;
Venevskaia et al., 2013; D'Amen et al., 2015; Distler et al., 2015). One
specific suggestion is that geographic patterns of energetic “capacity
constraints”, the limits on species richness imposed by available energy,
may be re-arranged under climate change and affect future community
assemblages (Sommer et al., 2010; Chown et al., 2012). Biotic associa-
tions between taxonomic groups show sensitivity when forecasting
future biodiversity (Kissling et al., 2007; Kissling et al., 2010). Account-
ing for trait data through an emerging trait biogeographic perspective
reveals heterogeneous taxonomic partitioning of assemblages
(Kissling et al., 2012; Ko et al., 2014). So far, community-based models
are increasingly used to examine attributes of communities.

Despite this popularity, the appeal of potentially addressing biotic
constraints in projecting communities under climate change, and an al-
ready existing debate about the choice of the stacked-species versus di-
rect community modeling approach (Ferrier and Guisan, 2006;
Leathwick et al., 2006; Baselga and Araújo, 2009; Chapman and Purse,
2011; Dubuis et al., 2011; Guisan and Rahbek, 2011; Distler et al.,
2015), empirical evaluations are rare. Algar et al. (2009) found good
performance of direct community compared to stacked-speciesmodeling
approaches for predicting changes in butterfly diversity in Canada. And
for a study along a Swiss elevational gradient, Dubuis et al. (2011)
showed that, while having slightly less predictive ability, only direct
community modeling approaches were able to recover the specific
shape of the elevation-richness relationship (Bonthoux et al., 2013).
More recently, Distler et al. (2015) found that direct communitymodel-
ing approaches could provide more accurate estimates of North
American bird species richness than stacked-species modeling ap-
proaches, particularly during the summer season. However, apart
from these case studies, the general suitability and performance of the
community-level modeling approaches for broader spatial scales and
for ecologically partitioned groups remain unclear.

The goal of our study is to provide such a general assessment and re-
solve the relative appropriateness of different methodologies for
modelingpatterns of functional community attributes over a broad geo-
graphic extent (and the typically concomitant coarse spatial grain) and
a large range of species and communities. We use a global dataset of
bird dietary preferences and geographic distributions to compare
model performance of the stacked-species modeling approach with
two types of direct community modeling approaches, one with total
and the other with relative (or proportional) richness of different die-
tary species groups as response variable. Relative guild species richness,
or guild prevalence, is a community attribute with important functional
implications and has previously been shown to exhibit strong environ-
mental associations (Kissling et al., 2012).We here askwhether the two
types of direct communitymodeling approaches are indeed able to pre-
dict the variation in guild assemblage along climatic gradients and, by
extension, are suited to address their potential perturbation under
climate change. If weak environmental associations of the response var-
iable or overall limited predictive performance constrain the direct com-
munity modeling approach, is the stacked-species modeling approach
able to successfully capture the aggregate response and predict its spa-
tial variation? We here assess this for a range of guild groupings that
vary in the respective environmental associations. Given the direct con-
sequences of such changes for the functioning and services of ecosys-
tems (Schmitz et al., 2003; Mooney et al., 2009; Kardol et al., 2010),
identifying suitable approaches for modeling these and other commu-
nity attributes is of strong applied importance and useful for biodiversi-
ty conservation and management.

2. Methods

2.1. Species data and environmental predictors

Weused a comprehensive database of recent expert-based breeding
distributions of all 9993 bird species in the world, spanning a latitudinal
range of 60°S to 85°N (see Jetz et al., 2012) and mol.org for sources,
taxonomic treatment and individual maps). Marine and pelagic species
as well as species with less than four occurrence grid cells were exclud-
ed from the analysis, leaving a total of 8472 bird species.We intersected
these distributionswith a global 110 × 110 km equal area grid (approx-
imately 1° near equator), a spatial resolution that according to recent
validation of these sorts of expert-based maps offers sufficiently low
false presence rates (Hurlbert and Jetz, 2007). This resulted in 11,079
grid cell assemblages for analysis.

We obtained estimates of the proportional use of each of seven food
categories (fruits, nectar, plants, seeds, invertebrates, vertebrates, and
carcasses) for each bird species from Wilman et al. (2014) to assign
each species to a dietary guild. In a “coarse” dietary classification all spe-
cies were classified as either primary consumers or high-level con-
sumers based on their main proportional use of summed plant (i.e.
fruits, nectar, plants, and seeds) and summed animal (i.e. invertebrates,
vertebrates, and scavengers) diets. “Fine” dietary guilds were identified
by highest proportional use as frugivores, nectarivores, herbivores,
granivores, insectivores, carnivores, or scavengers. Those species
exhibiting equal use of multiple summed or individual diets were clas-
sified as omnivores (named mixed consumers in the coarse dietary
guilds and omnivores in the fine dietary guilds). For similar treatment
and additional details see also Ko et al. (2014).

We extracted nine environmental predictor variables (all log10-
transformed) including one topographic and eight climatic predictors
over the same 110 km grid. All selected variables are known to exert a
strong influence on the distributions of individual species as well as
overall and guild species richness (Jetz and Rahbek, 2002; Field et al.,
2009; Kissling et al., 2012; Koet al., 2014). Elevational rangewasderived
from GTOPO30 at 30-arc seconds (approximately 1 km), produced by
the USGS (http://eors.usgs.gov/). Additionally, mean annual tempera-
ture, temperature seasonality (standard deviation of monthly means),
mean temperatures of the coldest and warmest months, total annual
precipitation, seasonality of precipitation (coefficient of variation of
monthly precipitation), and total precipitation in the driest and wettest
months were obtained for the 1975–2001 period (representing current
conditions, i.e. 2000, in this study) from CRU TS 2.1 (Mitchell and Jones,
2005) with an original spatial resolution of 30-arc minutes (approxi-
mately 50 km). All environmental predictor variables at the coarse
scale of 110 km grid cells (i.e. the spatial resolution of species distribu-
tions) were expressed by the area-weighted average values of fine
scale data (i.e. topographic and climatic predictors in approximately
1 km and 50 km resolutions, respectively).

2.2. Models

Considering the success of ensembles of models in reducing
both false negative and positive errors in predictions of species
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Table 1
Variation in the observed and predicted prevalence (proportional richness) of avian die-
tary guilds, modeled with stacked-species vs. direct community modeling approaches.
Values in the table are t statistic (t) for the difference from a slope of 1 and root mean
squared deviation (RMSD) from linear regression of predicted vs. observed prevalence,
calculated from the predictions by the stacked-species, community richness and preva-
lence modeling approaches.

Dietary guild Stacked-species
approach

Direct community approach

Richness model Prevalence
model

t RMSD t RMSD t RMSD

Coarse Primary consumers 13.8 0.015 −391.1 0.04 −424.6 0.04
High-level
consumers

7.6 0.017 −320.2 0.046 −318.3 0.047

Mixed consumers −1.5 0.008 −226 0.02 −222.1 0.02
Fine Frugivores 25.4 0.004 −37 0.014 −36.1 0.014

Nectarivores −18.5 0.003 −89.4 0.013 −99.8 0.013
Herbivores 12.7 0.013 −139.4 0.029 −92.5 0.026
Granivores 37.3 0.012 −150 0.029 −128.7 0.028
Insectivores 4.2 0.025 −145.4 0.048 −113.2 0.046
Carnivores 45.6 0.02 −162.3 0.044 −172.3 0.045
Scavengers −54.8 0.008 −169.3 0.011 −134.2 0.01
Omnivores 23.6 0.015 −122 0.042 −131.4 0.041
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distributions (Araújo and New, 2007), we used information from
ensemble modeling instead of picking a single ‘best’ model in this
study. To model species distributions using the stacked-species
modeling approach, we applied seven different species distribution
modeling algorithms (Elith et al., 2006) to each of the 8472 bird
species, including one classification method (mixture discriminant
analysis, MDA), three regression methods (generalized linear
models, GLM, generalized additive models, GAM and multivariate
adaptive regression spines, maximum entropy, MARS), and three
machine learning methods (general boosting method, GBM, random
forests, RF and maximum entropy, MAXENT). Among these we
selected the four models with the highest AUC (area under the
curve) values for further use (see below for AUC calculation).
We weighted the predictions of all these four models according
to their pre-evaluated AUC model performance (Marmion et al.,
2009) to generate a final probabilistic distribution map for each
species. Species presences based on maps of current species
distributions and absences within 4000 km of a species' current
distribution represented suitable and unsuitable species locations,
respectively. Because absences far from species occurrences are less
informative than those closer (VanDerWal et al., 2009), absence
grid cells were assigned weights that exponentially decreased with
distance from the nearest species presence grid cell and used in all
seven modeling algorithms. As sampling prevalence has been
shown to influence the accuracy of species distribution models
(McPherson et al., 2004), equal numbers of species presences and
absences were assigned for model calibration except for species
with b10 presence grid cells, which were assigned 100 absences.
We first ran all seven algorithms with the nine environmental pre-
dictor variables. The variables with the high contributions averaged
across those seven algorithms were then left in the final modeling.
For species with ≥10 presence cells, the presence cells were divided
into four quadrants based on their coordinates above or below the
median latitude and median longitude of all presence localities
(Peterson et al., 2006). A random subset of three of quadrants of
species presence and absence data was used to calibrate the model
in the first run while the remaining one for evaluation (Peterson
and Shaw, 2003; Peterson et al., 2006), using a threshold indepen-
dent receiver operating characteristic (ROC) curve along with
the associated AUC; 100% of the available species presence and
(selected) absence data were used for making final predictions. For
species with b10 presence cells, we used a jackknife validation
to select the best-performing modeling algorithms (Pearson et al.,
2006). Seven modeling algorithms were evaluated using the
jackknife procedure and final predictions were obtained by
averaging the modeling algorithms which had a corresponding
p value b0.01 in the jackknife procedure. Predicted guilds and total
richness were then given as the sum of predicted presence
probabilities for each species in each cell (Calabrese et al., 2014).

For the direct communitymodeling approach, we implemented four
modeling algorithms: generalized linearmodels (GLM), generalized ad-
ditivemodels (GAM); general boostingmethod (GBM) and random for-
ests (RF). GLM, GAM, and GBM were implemented as Poisson
regressions for observed guild richness as response and as Bernoulli/bi-
nomial regression for guild prevalence as response. For GBM and RF we
used amaximumof 2000 trees. For eachmodeling algorithm, beginning
with all nine environmental predictors, one predictor variable at a time
was sequentially removed using a supervised backward stepwise vari-
able selection procedure. The calibration and evaluation datasets were
also obtained by randomly splitting the original dataset into four quad-
rants, using the same partition way as the stacked-speciesmodeling ap-
proach. The model with the highest adjusted R2 and minimum number
of predictor variables was selected as the best model for each modeling
algorithm. The final direct community predictions were obtained by
weighting the predictions of the four modeling algorithms according
to the R2 of their best models.
2.3. Statistics

We compared the results provided by the stacked-species and direct
community modeling approaches using predicted prevalence (i.e. rela-
tive or proportional richness) of three coarse and eight fine dietary
guilds. For this we truncated the richness predictions for each grid cell
provided by the stacked-species and community richness approaches
(based on summed probabilities and predicted richness, respectively)
to the closest integer values anddivided predicted guild richness by pre-
dicted total richness. For all modeling approaches, we limited the geo-
graphic scope of predictions to cells with non-zero values for the
response variable, i.e. those currently occupied by at least one guild
member.

We evaluated the relationship between observed and predicted
guild prevalence and calculated the t statistic for the difference from a
slope equal to 1 (Equation: t = (Sop − 1) / SE, where Sop is the slope
of the observed versus predicted regression lines and SE is the standard
error of the slope), root mean squared deviation and R2 value of the ob-
served versus predicted regression lines (Piñeiro et al., 2008). Modeling
algorithms were implemented within the “BIOMOD” (Thuiller et al.,
2009) and “dismo” R packages and statistical analyses were performed
using R version 2.12.0 (Development Core Team, 2011).
3. Results

Among the 8472 species analyzed, the seven individual-species level
modeling algorisms, RF, GBM, MAXENT and GAM generally showed the
highest predictive accuracy for species with ≥10 presences, while GLM,
MARS, MDA and GBM performed well for species with b10 presences
(Fig. A.1 in Appendix A). Both at the coarse and fine ecological resolu-
tions, the stacked-species and direct community modeling approaches
varied substantially in their ability to predict the observed prevalence,
i.e. the relative or proportional richness, of avian dietary guilds world-
wide (Table 1; Figs. 1 and 2). The stacked-species modeling approach
consistently yielded predictions for guild prevalence that were very
close to those observed, as indicated by slope estimates very close to 1
(low absolute t values for a deviation from 1) and a low root mean
squared deviations (Table 1). The two types of direct communitymodel-
ing approaches using richness and prevalence as response variable
showed mostly very weak performance that was only in some cases



Fig. 1. Relationships between observed and predicted present (2000) relative richness/prevalence (proportions of total) of three coarse dietary guilds, i.e. primary consumers (a), high-
level consumers (b) and mixed consumers (c), using stacked-species and direct community modeling approaches for the global bird fauna (8472 species; 11,079,110 × 110 km grid cells
worldwide). Red dashed lines represent a 1:1 relationship. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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close to any of the stacked-species results (e.g. frugivores; Table 1). Both
community richness and prevalence modeling approaches were mostly
unable to predict the strong spatial variation in guild prevalence and
tended to strongly over-predict relative guild richness in low-preva-
lence assemblages, and under-predict it in high-prevalence assem-
blages (Figs. 1 and 2).

In the stacked-species modeling approach predictive performance
was similarly high for all guilds (Fig. 3, Fig. A.2 in Appendix A), with
only a slight lower goodness of fit for scavengers and the three coarse
guilds. This contrasts strongly with the direct community modeling ap-
proach, in which fit was strongest for frugivores and herbivores, but
then deteriorated rapidly for all other guilds and especially the coarse
Fig. 2. Relationships between observed and predicted present (2000) relative richness/prevale
herbivores (c), granivores (d), insectivores (e), carnivores (f), scavengers (g) and omnivores
fauna (8472 species; 11,079,110 × 110 km grid cells worldwide). Red dashed lines represent
reader is referred to the web version of this article.)
guild groupings. Fits differed little among the two direct community
modeling approaches. In no case was their fit superior to that of the
stacked-species approach, but the direct community modeling approach
did offer close to comparable strengths for predicting plant-eating birds.

Although greatly variable among the lower-richness assemblages,
(“Observation” panels in Figs. 4 and 5), globally observed guild preva-
lence was surprisingly uniform along the global richness gradient. For
example, the global prevalence of primary and higher-level consumers
centered around 0.3 and 0.7, respectively. The stacked-speciesmodeling
approachwas able to capture both the variation andmagnitude of prev-
alence along the richness gradient reasonably well, whereas the direct
community modeling approach misrepresented the observed
nce (proportions of total) of eight fine dietary guilds, i.e. frugivores (a), nectarivores (b),
(h), using stacked-species and direct community modeling approaches for the global bird
a 1:1 relationship. (For interpretation of the references to color in this figure legend, the

Image of Fig. 1
Image of Fig. 2


Fig. 3. Scatterplots of R-squared values from linear regression of predicted vs. observed prevalence for three coarse and eight fine dietary guilds using stacked-species and direct community
modeling approaches. Dashed lines represent a 1:1 relationship. Abbreviations of the dietary guilds: P, primary consumers; H, high-level consumers;M,mixed consumers; Fru, Frugivores;
Nec, Nectarivores; Her, Herbivores; Gra, Granivores; Ins, Insectivores; Car, Carnivores; Sca, Scavengers; Omn, Omnivores.

Fig. 4. Relationships between current-day observed total richness and predicted guild prevalence from different modeling approaches across three coarse dietary guilds. Each point is the
species richness and the proportion of a guild in a grid cell.
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prevalence, particularly in the low richness assemblages. These patterns
were similar for most fine dietary guilds (Fig. 5), with the exception of
plant-eating guilds, especially frugivores, where the guild prevalence
strongly increased with increasing total richness. The exceptional
Fig. 5. Relationships between current-day observed total richness and predicted guild prevale
species richness and the proportion of a guild in a grid cell. Both in the observations and pre
while most fine dietary guilds maintain prevalence across the total richness gradient especially
pattern for frugivores was also evident in the direct assessment of pre-
dicted vs. observed prevalence (Table 1; Figs. 2 and 3), where the two
types of direct communitymodeling approaches, i.e. community richness
and prevalence models, also offered a surprisingly reliable prediction.
nce from different modeling approaches across eight fine dietary guilds. Each point is the
dictions, frugivores show increasing guild prevalence with the increasing total richness
under high species richness.

Image of Fig. 3
Image of Fig. 4
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4. Discussion

Statistical approaches to predict species assemblages in communi-
ties are numerous and highly varied. Comparisons between two
prominent approaches—stacked-species versus direct community
modeling—have produced mixed conclusions about their relative pre-
dictive ability (Ferrier and Guisan, 2006; Leathwick et al., 2006;
Baselga and Araújo, 2009; Dubuis et al., 2011; Guisan and Rahbek,
2011; Distler et al., 2015). Our comparison found that the direct commu-
nity modeling approach showed as good performance as the stacked-
species modeling approach only for frugivores. Previous analyses have
concluded that direct community modeling approaches would be fa-
vored when species share similar environmental associations and face
strong assembly constraints (Baselga and Araújo, 2009; Chapman and
Purse, 2011; Dubuis et al., 2011). Our analysis does not support this con-
clusion, despite the fact that the ecological group, i.e. dietary guilds, an-
alyzed in this study share similar environmental conditions and
assembly constraints. Instead, the stacked-species modeling approach
predicted the prevalence of guilds observed today equally or better
than the two types of direct community modeling approaches. It has
been claimed that a drawback of stacked-species modeling approach is
that it overpredicts species richness, as in the case of analyses of Swiss
plants and NewWorld birds at resolutions of 25 m and 1° latitude/lon-
gitude, respectively (Guisan and Rahbek, 2011), because the
thresholding approach used to relate predicted probabilities to occur-
rence may lead to bias (Guillera-Arroita et al., 2015).

We offer some reasons why the two types of direct community
modeling approachmay not be as suitable as the stacked-speciesmodel-
ing approach. First, the direct community modeling approach only esti-
mates one aggregate response – environment association for all
species in a grouping or guild. It therefore cannot appropriately capture
the many variations in environmental associations of each species
(Graham et al., 1996; Jackson and Overpeck, 2000) or address them
with similar statistical power as the stacked-speciesmodeling approach,
which fits many individual response curves. Second, in the direct com-
munity modeling approach, the response variables are strongly influ-
enced by wide-ranging species, as they dominate grid cell records
(Jetz and Rahbek, 2002). This overwhelms the statistical signal attribute
able to species with more narrow ranges. The stacked-speciesmodeling
approach instead represents the environmental associations of all spe-
cies more uniformly and appropriately, which in turn may contribute
to their stronger predictive performance. Third, the co-occurrence of
species in communities and resulting patterns of absolute or relative
richness may be attributed more to regional factors or habitat filters
than species interactions (Belmaker and Jetz, 2012; Jetz and Fine,
2012), especially at grains coarser than those at which species interac-
tions may play out (Cooper and Belmaker, 2010), as is likely the case
in our study. As a consequence, environmental correlates may not cap-
ture anythingmeaningful about species' co-occurrences, or at least may
not do so equally for all species. We note that the best predictive per-
formance of the direct community modeling approach was found for
guilds that are known to face strong environmental constraints in
their regional diversification or local coexistence; e.g. for obligate
frugivores the requirement for fruits has obvious strong links with
year-round high temperature and productivity (Kissling et al.,
2009). Fourth, the ecological guild characterizations used here may
yet be too broad to appropriately capture groups of interacting
species suited for the one-group perspective of a direct community
modeling approach. Our results did suggest better performance
(i.e. lower absolute t values) for a few of the fine-grained guilds
than the coarse-grain guilds.

Interestingly, we found relatively uniform guild prevalence along
the gradient from low to high richness assemblages for most guilds,
and especially so for high-richness assemblages. This might suggest
there are “natural” restrictions on co-occurrence among environments,
i.e. there is a maximum species richness attainable in a particular
environment (environmental load). This may imply that the
prevalence of different dietary guilds is maintained with a dynamic
balance between the immigration of new species into the same or
different guild and the extinction of species already present in a
guild. This also may suggest that low richness assemblages in today's
environment may not have yet reached a putative maximum
environmental load.

Community-based conservation as a concept is relatively new and
has burst into the center of the global conservation discourse in the
past three decades. This concept espouses the integration of ecosystem
management and human well-being and the requirements for linking
protection and institutions at multiple levels and scales (Berkes, 2007;
Gruber, 2011; Ruiz-Mallen and Corbera, 2013). Assemblage-level biodi-
versity patterns predicted by community-based modeling approaches,
such as the stacked-species and direct community modeling approaches
in this study, offer a means to help guide conservation decisions for de-
termining environmental suitability and analyzing diversity hotspots
(Ferrier and Guisan, 2006; Guisan and Rahbek, 2011; Guisan et al.,
2013). Moreover, incorporating community functional attributes, e.g.
dietary guilds, with environmental responses in the modeling ap-
proaches reveals additional ecological insights. Besides, when species
assemblages co-occur in range, habitat, and management tolerance, it
is more able to use indicator species tomonitor environmental changes,
assess the efficacy of management, and provide warning signals for any
impending ecological shifts, which further enhances the effectiveness of
conservation projects (Carignan and Villard, 2002). In summary, our re-
sults highlight limitations for the use of direct communitymodeling ap-
proach for predicting geographic patterns in biodiversity. They support
stacked-species modeling approach or methods combining direct and
stacked elements, such as an emerging new generation of joint distribu-
tion models that combine co-occurrence with community signals
(Pollock et al., 2014). The weak performance of direct community
modeling approaches for current-day predictions calls into question
their additional application for global biodiversity projections under
global change. For some specific groups with apparent strong climatic
constraints, the direct community modeling approach, including com-
munity richness and prevalence modeling, does appear to offer good
predictive ability while requiring much fewer parameters than the
stacked-species modeling approach. And at spatial grains much finer
than those analyzed here (e.g. sub-kilometer), constraints arising from
resource diversity or species interactions may favor methods using
community attributes as response. But overall, ourfindings suggest cau-
tion against the utility of direct community modeling approach at the
large spatial extents usually necessary to fully capture the environmen-
tal niches of groups of species.
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